PHYS 705: Classical Mechanics




E———

Remaining Weeks (five wks) for the Semester

HW#8 and #9: CT and Hamilton-Jacobi Eq (Nov 8 & 15)

HW#10: Small Oscillations (Nov 22)

HW#11: Noninertial Reference Frame and Rigid Body Motion (Nov 29)
HW#12: Rigid Body Motion (more practice problems)

FINAL EXAM on Dec 6 (4:30-7:10p, Planetary 220)



Review from Previous Lecture on CT
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Example: Harmonic Oscillator

oL : p
p=—=mx —> X=—
Oox m
(l) X , 7 7 . m)'c2+kx2
f = U= 2 2
2 pz mp2 T2 |
.2 kx2 - m B 2 m2+ 2 (IHX&p)
L=T-U="2_ 2
S H=P Lo
2m 2
p. me’ 1
Define o = k/m or o’m=k > | H= + xzz—(p2+m2a)2x2)
2m 2 2m




I

Example: Harmonic Oscillator

Application of the Hamilton’s Equations give,

. OH
| x = — = £
o) X op m
ko 2 2
f(x)=—kx U(x)=— : OH 2mew” 5
) p=—"=-— X=—mmx
ox 2m

o = 1 ( >+ m x> ) Combining the two equations, we have the
2m standard equation for SHO: X+ @’x =0

We then showed that we can find a canonical transformation from (x, p) to

(X, P) such that X is cyclic so that P is constant.
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Example: Harmonic Oscillator

Here is the following Canonical Transformation:
X = /2_P sin X p=~N2mawP cos X
ma

Under this CT, the transformed Hamiltonian becomes extremely simple:
K =wP

Applying the Hamilton’s Equations gives,

P:—a_K:O (X is cyclic) X—a—K:a) [ depends onIC]

o0X 0P —

— | P =const - | X=owt+aT
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Example: Harmonic Oscillator

X(t)za)t+a P = const

**Notice how simple the EOM are in the new transformed cyclic variables. In
most application, the goal is to find a new set of canonical variables so that

there are as many cyclic variables as possible.

: : / 2P . :
Using the inverse transform : x = ,|—— sin X, we can write down the EOM
mao

in the original variable:

2P . .
X=,/—SIn (a)t + a) (P i1s a constant)
ma



Poisson Bracket

For any two function (q , p) and v (q, p) depending on g and p the Poisson

Bracket is defined as:

(u,v] = ou || ov | | ou || Ov (E’s sum rule
>lgp 5%_ apj 5pj 0qj for n dof)

PB is analogous to the Commutator in QM:

1 1
%[[U, V]] = _h (UV - VU) where u and v are two QM operators
I I
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“Symplectic” Approach & Poisson Bracket

Note that this symplectic structure for the canonical transformation can also be

expressed elegantly using the matrix notation that we have introduced earlier :

Recall that the Hamilton Equations can be written in a matrix form,

with =4, Nin = P> J=1-,n

(6Hj _OH [8Hj oH. (0 Ij
— | T3 > — — > an =
o). 0q, o)., P, -1 0
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“Symplectic” Approach & Poisson Bracket

In terms of these matrix notation, we can also write the Poisson bracket as,

[u.v], =

6u 8\/
1l on

And if § = z;(T]) is a canonical transformation, then Fundamental

Poisson Brackets can simply written as,
&8, =[nn].=J

54’].
on,

have the following conditional check for a canonical transformation:

Alsoif we have M, = j,k=1,---,2n (Jacobian matrix ) then, we

9

(this condition is typically easier to use
than the direction condition for a CT)

MIM' =J
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Poisson Bracket & Dynamics

In terms of PB, we also have the following equation of motion for any

dynamical quantity u(t):

General Comments:

1. Applying the above equation with u = H, we have [H ,H ] =0 and:

dH oH
dt ot
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Poisson Bracket & Dynamics

General Comments:

2.If u=gq; or p, , we get back the Hamilton’s Equations:

. oH : oH
q]':[qjoH:':_ and pj:[pj’HiI:_ (hW)
op; aq ;
. L du
3. If u is a constant of motion, i.e., 7 =0
A
du ou ou
n=—-=\u,H|+— m==) u,H|=——
dt [ H] Ot [ ] ot
. .. . . Ou
Specifically, for u explicitly not depends on time, i.e., 8_ =0,
4
du

7 =0 <& [u,H] =0 u and H “commute”!
4
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Poisson Bracket & Dynamics

4. One can formally write down the time evolution of u(t) as a series

solution in terms of the Poisson brackets evaluated att = 0!

u(t) =u(0)+1t[u,H]|, +t2—2![[u,H],H]O toe

The Hamiltonian is the generator of the system’s motion in time !

|:> The above Taylor’s expansion can be written as an “operator” eq:

u(t) = e"u(0) ju(t)) = """ [u(0))

where H = [ ,H ]| 0 (QM propagator)

This has a direct correspondence to the QM interpretation of H.
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Hamilton-Jacobi Equation

The HJ eq results when we enforce Q and P to be constants in time and

the transformed Hamiltonian K need to be identically zero.

If that is the case, the equations of motion will be,

,_K _,
' oP 0 =5
oK P =q,

Recall that we have the new and old Hamiltonian, K and H, relating
through the generating function F, (using type 2) by:

K = H+ai

ot
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Hamilton-Jacobi Equation

Then, one can formally rewrite the equation (with K = 0) as:

H QIﬁﬁqn’%’9%’t +%:O
0q, oq, Ot

This is known as the Hamilton-Jacobi Equation.

Notes: -Since F, (q, P, t) and P = ¢, are constants, the HJ equation
constitutes a partial differential equation of (n+1) independent
variables: (%a"‘aqn:t)

- It is customary to denote the solution F, by S and called it the

Hamilton’s Principal Function.



Hamilton-Jacobi Equation

Writing the Hamilton Principal Function out explicitly,
F,=8=5(q, 4,0, a,;t)

in terms of its (n+1) independent variables (611 s, ) and

constants Pl =q,

After we get an exp for S from the HJ Eq, we can solve for p(t) and ¢(t) using

the following two partial differential eqs:

%
p= S(g.au) (T1)
aqz’
Q,:,@:aS(q’a’t) (2)

o,
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Hamilton-Jacobi Equation

1. Using (T1) and initial conditions at time f,, one can solve for the n

unknown constants ¢; in terms of the initial conditions, i.e.,

B oS (q, a,t)
- aq.

l

P; (to)

q4=4qp 1=y
) &, :ai(%,poato)

2. Then, by using (T2) again at time ¢, , we obtain the other n constants of

motion f,

0S(q.a.t)
o,

1

O =p=

qqu ,t=t0



Hamilton-Jacobi Equation

3. With all 2n constants of motion «,, 3, solved, we can now again use

Eq. (T2) again to solve for ¢, in terms of the ¢;, §, at a later time t.

g, =9q,(a. p.t) [ﬂ’:%jﬂj

4. With «;, 8, and g, known, we can use Eq. (T1) again to solve for p,

in terms of «,, [, at a later time .

(p,- _ OS(q(a,ﬂ,t),a,t)J

aq,

1

Pi :pi(aaﬂat)

=) The two boxed equations constitute the desired complete solutions

of the Hamilton equations of motion.
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Hamilton’s Characteristic Function

Let consider the case when the Hamiltonian is constant in time, i.e.,

H(Qiapi):al

Now, let also consider a canonical transformation under which the new
momenta are all constants of the motion,

(the transformed Q, are not
restricted a priori. )

P =c.

l 1

AND H is the new canonical momentum «,, (H (q,. X pi) = 051)

) Then, we seek to determine the time-independent generating function

W(ql. P ) (Type-2) producing the desired CT.
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Hamilton’s Characteristic Function

Similar to the development of the Hamilton’s Principal Function, since

W(q, P) is Type-2, the corresponding equations of transformation are

oWl(q,a
P = ( ) Ay e e
oq, (Note: the indices inside W(q, P) are
W (q,a being suppressed.)
0= ) (T2)
o,
GW(q, 05)
Now, since W(q, P) is time-independent, p =0 and we have

H ql.,a—W +6 =K =¢,
0q. Ot
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Hamilton’s Characteristic Function

W(q,P) is called the Hamilton’s Characteristic Function and

is the partial differential equation (Hamilton-Jacobi Equation) for W.
Here, we have n independent constants ¢; (with ¢, = H) in determining

this partial diff. eq.
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Action-Angle Variables in 1dof =

- Often time, for a system which oscillates in time, we
might not be interested in the details about the EOM
but we just want information about the frequencies ¢ g

of its oscillations. q (t +T ) =q (t )

- The H-J procedure in terms of the Hamilton Characteristic Function can

be a powerful method in doing that.

- To get a sense on the power of the technique, we will examine the simple

case when we have only one degree of freedom.

- We continue to assume a conservative system with // = ¢, being a

constant
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Action-Angle Variables in 1dof

- Now, we introduce a new variable

J=<j5pdq

called the Action Variable, where the path integral is taken over one full

cycle of the periodic motion.

i% - Now, instead of requiring our new momenta P to be ¢, , we requires

P =J (another constant instead of ¢, )

- Then, our Hamilton Characteristic Function can be written in term of J

w=w(q,J)
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Action-Angle Variables in 1dof

- Since the generating function W(q, J) is time independent, the

Hamiltonian in the transformed coordinate K equals to H so that

a,=H=H(J)=K(J)

- The frequency of the periodic oscillation associated with g, v(J ) = 1/ T

can be directly evaluated thru

-2

without finding the complete EOM



