PHYS 705: Classical Mechanics

Remaining Weeks (five wks) for the Semester

HW#8 and #9: CT and Hamilton-Jacobi Eq (Nov 8 & 15)

HW#10: Small Oscillations (Nov 22)

HW#11: Noninertial Reference Frame and Rigid Body Motion (Nov 29)

HW#12: Rigid Body Motion (more practice problems)

FINAL EXAM on Dec 6 (4:30-7:10p, Planetary 220)

Review from Previous Lecture on CT

$$f(x) = -kx \qquad U(x) = \frac{kx^2}{2}$$

$$L = T - U = \frac{m\dot{x}^2}{2} - \frac{kx^2}{2}$$

$$p = \frac{\partial L}{\partial \dot{x}} = m\dot{x} \rightarrow \dot{x} = \frac{p}{m}$$

$$f(x) = -kx \quad U(x) = \frac{kx^2}{2}$$

$$L = T - U = \frac{m\dot{x}^2}{2} - \frac{kx^2}{2}$$

$$H = p\dot{x} - L = p\dot{x} - \frac{m\dot{x}^2}{2} + \frac{kx^2}{2}$$

$$= \frac{p^2}{m} - \frac{m}{2} \frac{p^2}{m^2} + \frac{kx^2}{2} \quad (\text{in } x \& p)$$

$$H = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

Define
$$\omega = \sqrt{k/m}$$
 or $\omega^2 m = k \rightarrow$

Define
$$\omega = \sqrt{k/m}$$
 or $\omega^2 m = k \rightarrow H = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2 = \frac{1}{2m}(p^2 + m^2\omega^2 x^2)$

$$H = \frac{1}{2m} \left(p^2 + m^2 \omega^2 x^2 \right)$$

Application of the Hamilton's Equations give,

$$\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{m}$$

$$\dot{p} = -\frac{\partial H}{\partial x} = -\frac{2m^2 \omega^2}{2m} x = -m\omega^2 x$$

Combining the two equations, we have the standard equation for SHO: $\ddot{x} + \omega^2 x = 0$

We then showed that we can find a canonical transformation from (x, p) to (X, P) such that X is *cyclic* so that P is constant.

Here is the following Canonical Transformation:

$$x = \sqrt{\frac{2P}{m\omega}} \sin X \qquad p = \sqrt{2m\omega P} \cos X$$

Under this CT, the transformed Hamiltonian becomes extremely simple:

$$K = \omega P$$

Applying the Hamilton's Equations gives,

$$\dot{P} = -\frac{\partial K}{\partial X} = 0$$
 (X is cyclic) $\dot{X} = \frac{\partial K}{\partial P} = \omega$ depends on IC

 $\rightarrow P = const$ $\rightarrow X = \omega t + \alpha$

$$X(t) = \omega t + \alpha$$
 $P = const$

**Notice how simple the EOM are in the new transformed cyclic variables. In most application, the goal is to find a new set of canonical variables so that there are as many cyclic variables as possible.

Using the inverse transform : $x = \sqrt{\frac{2P}{m\omega}} \sin X$, we can write down the EOM in the original variable:

$$x = \sqrt{\frac{2P}{m\omega}} \sin(\omega t + \alpha) \qquad (P \text{ is a constant})$$

Poisson Bracket

For any two function u(q, p) and v(q, p) depending on q and p the Poisson Bracket is defined as:

$$[u,v]_{q,p} \equiv \left(\frac{\partial u}{\partial q_j}\right) \left(\frac{\partial v}{\partial p_j}\right) - \left(\frac{\partial u}{\partial p_j}\right) \left(\frac{\partial v}{\partial q_j}\right) \qquad \text{(E's sum rule for } n \text{ dof)}$$

PB is analogous to the Commutator in QM:

$$\frac{1}{i\hbar} \llbracket u, v \rrbracket \equiv \frac{1}{i\hbar} (uv - vu) \qquad \text{where } u \text{ and } v \text{ are two QM operators}$$

"Symplectic" Approach & Poisson Bracket

Note that this symplectic structure for the canonical transformation can also be expressed elegantly using the matrix notation that we have introduced earlier:

Recall that the Hamilton Equations can be written in a matrix form,

$$\dot{\mathbf{\eta}} = \mathbf{J} \frac{\partial H}{\partial \mathbf{\eta}}$$

with

$$\eta_j = q_j, \qquad \eta_{j+n} = p_j; \qquad j = 1, \dots, n$$

$$\left(\frac{\partial H}{\partial \mathbf{\eta}}\right)_{j} = \frac{\partial H}{\partial q_{j}}, \qquad \left(\frac{\partial H}{\partial \mathbf{\eta}}\right)_{j+n} = \frac{\partial H}{\partial p_{j}}; \quad \text{and} \quad \mathbf{J} = \begin{pmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{I} & \mathbf{0} \end{pmatrix}$$

"Symplectic" Approach & Poisson Bracket

In terms of these matrix notation, we can also write the Poisson bracket as,

$$\left[u,v\right]_{\mathbf{\eta}} = \frac{\partial u}{\partial \mathbf{\eta}} \mathbf{J} \frac{\partial v}{\partial \mathbf{\eta}}$$

And if $\zeta = \zeta(\eta)$ is a canonical transformation, then Fundamental Poisson Brackets can simply written as,

$$\left[\zeta,\zeta\right]_{\eta}=\left[\eta,\eta\right]_{\zeta}=\mathbf{J}$$

Also if we have $M_{jk} = \frac{\partial \zeta_j}{\partial \eta_k}$, $j, k = 1, \dots, 2n$ (Jacobian matrix) then, we

have the following conditional check for a canonical transformation:

$$\mathbf{MJM}^T = \mathbf{J}$$

(this condition is typically easier to use than the direction condition for a CT)

Poisson Bracket & Dynamics

In terms of PB, we also have the following equation of motion for any dynamical quantity u(t):

$$\dot{u} = \frac{du}{dt} = \left[u, H\right] + \frac{\partial u}{\partial t}$$

General Comments:

1. Applying the above equation with u = H, we have [H, H] = 0 and:

$$\frac{dH}{dt} = \frac{\partial H}{\partial t}$$

Poisson Bracket & Dynamics

General Comments:

2. If $u = q_i$ or p_i , we get back the Hamilton's Equations:

$$\dot{q}_{j} = [q_{j}, H] = \frac{\partial H}{\partial p_{j}}$$
 and $\dot{p}_{j} = [p_{j}, H] = -\frac{\partial H}{\partial q_{j}}$ (hw)

3. If *u* is a constant of motion, i.e., $\frac{du}{dt} = 0$

$$\dot{u} = \frac{du}{dt} = \left[u, H\right] + \frac{\partial u}{\partial t} \qquad \Longrightarrow \qquad \left[u, H\right] = -\frac{\partial u}{\partial t}$$

Specifically, for u explicitly not depends on time, i.e., $\frac{\partial u}{\partial t} = 0$,

$$\frac{du}{dt} = 0 \qquad \longleftrightarrow \qquad [u, H] = 0 \qquad u \text{ and } H \text{ "commute"}!$$

Poisson Bracket & Dynamics

4. One can formally write down the time evolution of u(t) as a series solution in terms of the Poisson brackets evaluated at t = 0!

$$u(t) = u(0) + t[u, H]_0 + \frac{t^2}{2!}[[u, H], H]_0 + \cdots$$

The Hamiltonian is the generator of the system's motion in time!

The above Taylor's expansion can be written as an "operator" eq:

$$u(t) = e^{\hat{H}t}u(0)$$
where $\hat{H} = [, H]_0$

$$(QM \text{ propagator})$$

This has a direct correspondence to the QM interpretation of *H*.

The HJ eq results when we enforce Q and P to be constants in time and the transformed Hamiltonian K need to be identically zero.

If that is the case, the equations of motion will be,

$$\dot{Q}_{i} = \frac{\partial K}{\partial P_{i}} = 0$$

$$Q_{i} = \beta_{i}$$

$$\dot{P}_{i} = -\frac{\partial K}{\partial Q_{i}} = 0$$

$$P_{i} = \alpha_{i}$$

Recall that we have the new and old Hamiltonian, K and H, relating through the generating function F_2 (using type 2) by:

$$K = H + \frac{\partial F_2}{\partial t}$$

Then, one can formally rewrite the equation (with K = 0) as:

$$H\left(q_1, \dots, q_n; \frac{\partial F_2}{\partial q_1}, \dots, \frac{\partial F_2}{\partial q_n}; t\right) + \frac{\partial F_2}{\partial t} = 0$$

This is known as the Hamilton-Jacobi Equation.

Notes: -Since $F_2\left(q,P,t\right)$ and $P_i=\alpha_i$ are constants, the HJ equation constitutes a partial differential equation of (n+1) independent variables: $\left(q_1,\cdots,q_n,t\right)$

- It is customary to denote the solution F_2 by S and called it the Hamilton's Principal Function.

Writing the Hamilton Principal Function out explicitly,

$$F_2 \equiv S = S(q_1, \dots, q_n, \alpha_1, \dots, \alpha_n; t)$$

in terms of its (n+1) independent variables $(q_1, \dots, q_n; t)$ and constants $P_i = \alpha_i$

After we get an exp for S from the HJ Eq, we can solve for $p_i(t)$ and $q_i(t)$ using the following two partial differential eqs:

$$p_i = \frac{\partial S(q, \alpha, t)}{\partial q_i} \quad (T1)$$

$$Q_{i} = \beta_{i} = \frac{\partial S(q, \alpha, t)}{\partial \alpha_{i}} \quad (T2)$$

1. Using (T1) and *initial* conditions at time t_0 , one can solve for the n unknown constants α_i in terms of the *initial* conditions, i.e.,

$$p_{i}(t_{0}) = \frac{\partial S(q, \alpha, t)}{\partial q_{i}}\bigg|_{q=q_{0}, t=t_{0}}$$

2. Then, by using (T2) again at time t_0 , we obtain the other n constants of motion β_i

$$Q_{i} = \beta_{i} = \frac{\partial S(q, \alpha, t)}{\partial \alpha_{i}} \bigg|_{q=q_{0}, t=t_{0}}$$

3. With all 2n constants of motion α_i , β_i solved, we can now again use Eq. (T2) again to solve for q_i in terms of the α_i , β_i at a later time t.

$$q_i = q_i(\alpha, \beta, t)$$

$$\left(\beta_i = \frac{\partial S(q, \alpha, t)}{\partial \alpha_i}\right)$$

4. With α_i , β_i , and q_i known, we can use Eq. (T1) again to solve for p_i in terms of α_i , β_i at a later time t.

$$p_i = p_i(\alpha, \beta, t)$$

$$\left(p_i = \frac{\partial S(q(\alpha, \beta, t), \alpha, t)}{\partial q_i}\right)$$

The two boxed equations constitute the desired complete solutions of the Hamilton equations of motion.

Hamilton's Characteristic Function

Let consider the case when the Hamiltonian is constant in time, i.e.,

$$H(q_i, p_i) = \alpha_1$$

Now, let also consider a canonical transformation under which the new momenta are all constants of the motion, (the transformed Q_i are not

restricted a priori.)

$$P_i = \alpha_i$$

AND H is the new canonical momentum α_1 , $(H(q_i, p_i) = \alpha_1)$

Then, we seek to determine the time-independent generating function $W(q_i, P_i)$ (Type-2) producing the desired CT.

Hamilton's Characteristic Function

Similar to the development of the Hamilton's Principal Function, since W(q,P) is Type-2, the corresponding equations of transformation are

$$p_{i} = \frac{\partial W(q, \alpha)}{\partial q_{i}}$$
 (T1) (Note: the indices inside $W(q, P)$ are
$$Q_{i} = \frac{\partial W(q, \alpha)}{\partial \alpha}$$
 (T2) being suppressed.)

Now, since W(q,P) is time-independent, $\frac{\partial W(q,\alpha)}{\partial t} = 0$ and we have

$$H\left(q_{i}, \frac{\partial W}{\partial q_{i}}\right) + \frac{\partial W}{\partial t} = K = \alpha_{1}$$

Hamilton's Characteristic Function

W(q,P) is called the Hamilton's Characteristic Function and

$$H\left(q_i, \frac{\partial W}{\partial q_i}\right) - \alpha_1 = 0$$

is the partial differential equation (Hamilton-Jacobi Equation) for W. Here, we have n independent constants α_i (with $\alpha_1 = H$) in determining this partial diff. eq.

Action-Angle Variables in 1dof

- Often time, for a system which oscillates in time, we might not be interested in the details about the EOM but we just want information about the *frequencies* of its oscillations.

$$q(t+T)=q(t)$$

- The H-J procedure in terms of the Hamilton Characteristic Function can be a powerful method in doing that.
- To get a sense on the power of the technique, we will examine the simple case when we have only one degree of freedom.
- We continue to assume a conservative system with $\,H=lpha_{_{\! 1}}\,$ being a constant

Action-Angle Variables in 1dof

- Now, we introduce a new variable

$$J = \oint p \, dq$$

called the **Action Variable**, where the path integral is taken over one full cycle of the periodic motion.

- Now, instead of requiring our new momenta $\,P\,$ to be $lpha_{\!\scriptscriptstyle 1}$, we requires

$$P = J$$
 (another constant instead of α_1)

- Then, our Hamilton Characteristic Function can be written in term of J

$$W = W(q,J)$$

Action-Angle Variables in 1dof

- Since the generating function W(q, J) is time independent, the Hamiltonian in the transformed coordinate K equals to H so that

$$\alpha_{1} \equiv H = H(J) = K(J)$$

- The frequency of the periodic oscillation associated with q, v(J) = 1/T can be directly evaluated thru

$$v(J) = \frac{\partial K(J)}{\partial J}$$

without finding the complete EOM