
PHYS 705: Classical Mechanics
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Remaining Weeks (five wks) for the Semester

FINAL EXAM on Dec 6 (4:30-7:10p, Planetary 220)

HW#8 and #9: CT and Hamilton-Jacobi Eq (Nov 8 & 15)

HW#10: Small Oscillations (Nov 22)

HW#11: Noninertial Reference Frame and Rigid Body Motion (Nov 29)

HW#12: Rigid Body Motion (more practice problems)
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Review from Previous Lecture on CT



Example: Harmonic Oscillator

Define                         or                     
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Example: Harmonic Oscillator

H px
p m


 




Application of the Hamilton’s Equations give,

( )f x kx 

m

0 x
2

( )
2
kxU x  2 2

22
2

H mp x m x
x m

 
     




 2 2 2 21
2

H p m x
m

  Combining the two equations, we have the 

standard equation for SHO:
2 0x x 

We then showed that we can find a canonical transformation from  (x, p) to 

(X, P) such that X is cyclic so that P is constant.
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Example: Harmonic Oscillator

Here is the following Canonical Transformation:

2 sinPx X
m



Under this CT, the transformed Hamiltonian becomes extremely simple: 

K P

2 cosp m P X

Applying the Hamilton’s Equations gives,

(X is cyclic)0KP
X

P const


  


 

 KX
P
X t



 


 


  

 depends on IC
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Example: Harmonic Oscillator

**Notice how simple the EOM are in the new transformed cyclic variables.  In 

most application, the goal is to find a new set of canonical variables so that 

there are as many cyclic variables as possible.

Using the inverse transform :                                , we can write down the EOM 

in the original variable: 

2 sinPx X
m



 2 sinPx t
m

 


  (P is a constant)

P const X t t  
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Poisson Bracket

For any two function                  and                  depending on q and p the Poisson 

Bracket is defined as:

PB is analogous to the Commutator in QM:

  ,
,

q p
j j j j

u v u vu v
q p p q

        
                   

(E’s sum rule
for n dof)
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 ,u q p  ,v q p

   1 1,u v uv vu
i i

 
  where u and v are two QM operators



“Symplectic” Approach & Poisson Bracket
Note that this symplectic structure for the canonical transformation can also be 

expressed elegantly using the matrix notation that we have introduced earlier :

Recall that the Hamilton Equations can be written in a matrix form,                                 

H



η J

η


, ; 1, ,j j j n jq p j n     

, ;
j jj j n

H H H H
q p

      
          η η

with

and
 

   

0 I
J

I 0
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“Symplectic” Approach & Poisson Bracket
In terms of these matrix notation, we can also write the Poisson bracket as,

And if                   is a canonical transformation, then Fundamental 

Poisson Brackets can simply written as,  

 , u vu v  

 η
J

η η

 ζ ζ η

   , , 
η ζ

ζ ζ η η J
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Also if we  have                                                           (Jacobian matrix ) then, we 

have the following conditional check for a canonical transformation: 

T MJM J (this condition is typically easier to use 
than the direction condition for a CT)

, , 1, , 2j
jk

k

M j k n




 






Poisson Bracket & Dynamics
In terms of PB, we also have the following equation of motion for any 

dynamical quantity u(t): 

 ,du uu u H
dt t


  




1. Applying the above equation with u = H, we have                       and:

dH H
dt t






 , 0H H 
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General Comments:



Poisson Bracket & Dynamics
General Comments:

2. If                           , we get back the Hamilton’s Equations: 

,j j
j

Hq q H
p
    



j ju q or p

,j j
j

Hp p H
q
     

and (hw)

3. If u is a constant of motion, i.e., 0du
dt



 , uu H
t


 



Specifically, for u explicitly not depends on time, i.e.,                ,0u
t





 , 0u H 
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 ,du uu u H
dt t


  




0du
dt

 u and H “commute”!



Poisson Bracket & Dynamics
4. One can formally write down the time evolution of u(t) as a series 

solution in terms of the Poisson brackets evaluated at t = 0 !

   
2

0 0
( ) (0) , , ,

2!
tu t u t u H u H H      

The Hamiltonian is the generator of the system’s motion in time !

This has a direct correspondence to the QM interpretation of H.

The above Taylor’s expansion can be written as an “operator” eq:

ˆ( ) (0)Htu t e u

 
0

ˆwhere ,H H

/( ) (0)iHtu t e u 

(QM propagator)
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Hamilton-Jacobi Equation

The HJ eq results when we enforce Q and P to be constants in time and 

the transformed Hamiltonian K need to be identically zero. 

If that is the case, the equations of motion will be, 

Recall that we have the new and old Hamiltonian, K and H, relating 

through the generating function F2 (using type 2) by:

0i
i

KQ
P


 




0i
i

KP
Q


  




2FK H
t


 



i iP 
i iQ 
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-Since                      and               are constants, the HJ equation 

constitutes a partial differential equation of (n+1) independent 

variables: 

- It is customary to denote the solution        by S and called it the 

Hamilton’s Principal Function.

Hamilton-Jacobi Equation

Then, one can formally rewrite the equation (with K = 0) as:

This is known as the Hamilton-Jacobi Equation.

2 2 2
1

1

, , ; , , ; 0n
n

F F FH q q t
q q t

   
     

 

 1, , ,nq q t

Notes:
i iP 

2F
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 2 , ,F q P t



After we get an exp for S from the HJ Eq, we can solve for pi(t) and qi(t) using 

the following two partial differential eqs:

Hamilton-Jacobi Equation

Writing the Hamilton Principal Function out explicitly,

in terms of its (n+1) independent variables                           and

constants

 2 1 1, , , , , ;n nF S S q q t    

i iP 

 , ,
( 1)i

i

S q t
p T

q





 , ,
( 2)i i

i

S q t
Q T







 


 1, , ;nq q t
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Hamilton-Jacobi Equation

1.  Using (T1) and initial conditions at time      ,  one can solve for the n

unknown constants        in terms of the initial conditions, i.e.,

2. Then, by using (T2) again at time      , we obtain the other n constants of 

motion 

i

   
0 0

0
,

, ,
i

i q q t t

S q t
p t

q


 






0t

 0, 0 0,i i q p t 

0t

i

 
0 0,

, ,
i i

i q q t t

S q t
Q





 


 


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Hamilton-Jacobi Equation

3. With all 2n constants of motion             solved, we can now again use 

Eq. (T2) again to solve for      in terms of the              at a later time t.  

The two boxed equations constitute the desired complete solutions 

of the Hamilton equations of motion.

,i i 

 , ,i iq q t   , ,
i

i

S q t



 

  

,i i iq

4. With                           known, we can use Eq. (T1) again to solve for    

in terms of              at a later time t. 

, , and i i iq 
,i i 

 , ,i ip p t 
  , , , ,

i
i

S q t t
p

q
   

   

ip
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Hamilton’s Characteristic Function

Let consider the case when the Hamiltonian is constant in time, i.e.,

Now, let also consider a canonical transformation under which the new 

momenta are all constants of the motion,

  1,i iH q p 

AND H is the new canonical momentum      ,  
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i iP 

  1,i iH q p 1

Then, we seek to determine the time-independent generating function 

(Type-2) producing the desired CT. ,i iW q P

(the transformed      are not 
restricted a priori. )

iQ



Hamilton’s Characteristic Function

Similar to the development of the Hamilton’s Principal Function, since 

Now, since                is time-independent,                               and we have  
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(Note: the indices inside W(q, P) are 

being suppressed.)

 ,W q P

is Type-2, the corresponding equations of transformation are

 ,
( 1)i

i

W q
p T

q





 ,
( 2)i

i

W q
Q T








 ,

0
W q
t





,i
i

W WH q
q t

  
   

1K  

 ,W q P



Hamilton’s Characteristic Function

is called the Hamilton’s Characteristic Function and 

is the partial differential equation (Hamilton-Jacobi Equation) for W.  

Here, we have n independent constants       (with                ) in determining 

this partial diff. eq.
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 ,W q P

1, 0i
i

WH q
q


 

   

1 H i



Action-Angle Variables in 1dof
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- Often time, for a system which oscillates in time, we 

might not be interested in the details about the EOM

but we just want information about the frequencies

of its oscillations.

- The H-J procedure in terms of the Hamilton Characteristic Function can 

be a powerful method in doing that.

- To get a sense on the power of the technique, we will examine the simple 

case when we have only one degree of freedom.

- We continue to assume a conservative system with                 being a 

constant
1H 

   q t T q t 



Action-Angle Variables in 1dof

23

- Now, we introduce a new variable

called the Action Variable, where the path integral is taken over one full 

cycle of the periodic motion.

J p dq 

- Now, instead of requiring our new momenta to be      , we requires 

- Then, our Hamilton Characteristic Function can be written in term of J

 ,W W q J

1

P J (another constant instead of       )1

P



Action-Angle Variables in 1dof

24

- The frequency of the periodic oscillation associated with q,

   K J
v J

J





can be directly evaluated thru
  1v J T

without finding the complete EOM

- Since the generating function W(q, J) is time independent, the 

Hamiltonian in the transformed coordinate K equals to H so that

   1 H H J K J   




